Generalized Chebyshev polynomials of the second kind

نویسنده

  • Mohammad A. ALQUDAH
چکیده

We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and how to efficiently compute such approximations. We conclude the paper with some results concerning integrals of the generalized Chebyshev-II and Bernstein polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

Application of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind

In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

On an Hypercomplex Generalization of Gould-Hopper and Related Chebyshev Polynomials

An operational approach introduced by Gould and Hopper to the construction of generalized Hermite polynomials is followed in the hypercomplex context to build multidimensional generalized Hermite polynomials by the consideration of an appropriate basic set of monogenic polynomials. Directly related functions, like Chebyshev polynomials of first and second kind are constructed.

متن کامل

Solving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method

In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015